Why Adjusted AFT?

5 Basic Options for % AC

- Specify a Minimum % AC
- Specify a Minimum VMA
- Specify a Minimum V_{be}
- Specify a Minimum AFT
- Specify a Minimum Adjusted AFT

Adjusted AFT and VMA are both intended to provide an adequate effective AC volume (V_{be}).

VMA is based on the Nominal Maximum Aggregate Size

AFT is based on the calculated Aggregate Surface Area (SA), which is basically an "Index".

Why AFT instead of VMA?

There is little correlation between the nominal maximum aggregate size and overall gradation, or aggregate surface area (SA)

The Calculated "SA" represents a gradation similar to a Fineness Modulus

"SA" can account for changes in Aggregate Specific Gravity

- $VMA = V_{be} + V_{a}$
- $AFT V_{be}/SA$
- "SA" represents the aggregate gradation

• As "SA" increases, V_{be} must also increase in order to maintain a specific AFT

• AFT, Aggregate SA and V_{be} are independent of the degree of compaction at Design (i.e. the number of blows or gyrations)

 VMA and VFA are dependent on the degree of compaction at Design **The Primary Difference**

between

Asphalt Pavement Mixture

and

Aggregate Base

is

ASPHALT CEMENT

Inadequate

Asphalt Film Thickness (AFT)

or

Effective AC Volume (V_{be})

May Result in

"Stripping" or Raveling

More Stripping on TH 101

Raveling on TH 12

More Raveling on TH 12

Raveling on Schmidt Lake Road

Raveling on TH 21

More Raveling on TH 21

Excessive

Asphalt Film Thickness (AFT)

or

Effective Asphalt Volume (V_{be})

May Result in

Rutting

Rutting on TH 41

Rutting on TH 41

Rutting on TH 494

Measures Tried to Provide Adequate Effective AC Volume

Minimum Total Asphalt Cement Content

Minimum Voids in Mineral Aggregate (VMA)

Minimum Asphalt Film Thickness (AFT)

Minimum Total AC Content <u>Does Not Account for:</u>

Changes in AC Absorption

 Changes in Gradation or Aggregate Surface Area

Minimum VMA

- Accounts for Changes in AC Absorption
- Includes Both V_{be} and Air Voids
- Based on Very Poor Correlation with Aggregate Surface Area
- Encourages the Addition of Sand
- VMA is dependent on Design Compaction

Minimum AFT Advantages

 Accounts for AC Absorption by using Effective AC Content

 Has a Direct Correlation with Aggregate Surface Area

 Can Account for Changes in Aggregate Specific Gravity

Minimum AFT Problems

"Normally" the Minimum Required
 Effective AC Volume (V_{be}) is Directly
 Proportional to the Aggregate Surface Area
 (This is probably not necessary).

A Gradation is Required for Each AFT Calculation

MINIMUM VMA CRITERIA

(Based on 4% Design Air Voids)

ASPHALT INSTITUTE MIX DESIGN (MS-2)

Nominal Maximum	Maximum	Minimum
Aggregate Size	Aggregate Size	% VMA
25.0 mm (1")	1.5"	12.0
19.0 mm (3/4")	1"	13.0
12.5 mm (1/2")	3/4"	14.0
9.5 mm (3/8")	1/2"	15.0
4.75mm (#4)	3/8"	17.0

Illustrations of Poor Correlation between Maximum Aggregate Size and Aggregate Gradation

COMPARISON OF SPEC. 2360, GRADATIONS A & B MIXTURES (2001 Trial Mix Data)

COMPARISON OF SPEC. 2360, GRADATIONS B & C MIXTURES (2001 Trial Mix Data)

COMPARISON OF SPEC. 2350, GRADATIONS #3 & #5 MIXTURES (2001 Trial Mix Data)

COMPARISON OF SPEC.2350, GRADATIONS #3 & #4 MIXTURES (2001 Trial Mix Data)

COMPARISON OF SPEC. 2350, GRADATIONS #2 & #3 MIXTURES (2001 Trial Mix Data)

3/4" MAXIMUM SIZE AGGREGATE

(Based on 2003 Contractor Production Data)

How is Aggregate Surface Area Calculated?

It is based on the Aggregate Gradation, and Surface Area Factors listed in the Asphalt Institutes MS-2 as part of the Hveem Design Method

Based on the Asphalt Institutes MS-2 SA = Calculated Surface Area in SF/ Lb.

$$SA = 2 + .02a + .04b + 0.08c + .14d + .30e + .60f + 1.60g$$

Where:

a,b,c,d,e,f and g are % of total aggregate passing the #4, #8, #16, #30, #50, #100 and #200 sieves, respectively

Aggregate SA Adjustment

• The SA factors are generally based on an aggregate specific gravity (G_{sb}) of 2.650.

• Aggregates with higher G_{sb} 's will have less SA per pound than those with lower G_{sb} 's

• The aggregate SA can be adjusted based on the minus #4 G_{sb} As follows:

Adjusted SA = $SA(2.650/-\#4G_{sb})$

My Verification

AGGREGATE SURFACE AREA VS. SIEVE SIZE (Assuming Spherical Shape)

	Relative	Aggregate
Sieve Size	Surface Area	Surface Area
#/(mm)	(Per Unit Wt.)	(SF/Lb)
1" (25)	1.0	0.44
3/4" (19)	1.3	0.57
3/8" (9.5)	2.6	1.13
#4 (4.75)	5.3	2.31
#8 (2.36)	11	4.77
#16 (1.18)	21	9.16
#30 (0.60)	42	18.31
#50 (0.30)	83	36.19
#100 (0.15)	167	72.81
#200 (0.075)	333	145.19

Assuming Spherical particles with a Specific Gravity = 2.65

The calculated aggregate SA is not exact,

but generally reasonably represents the gradation.

SURFACE AREA CALCULATIONS

2001 TM Data

Mix Type 2360 Grad. #B

Avg. - 1 SD

		MS II			My Calculations	
Sieve		SA	SA		SA	SA
Size	% Passing	Factor	(SF/Lb)	% Retained	Factor	(SF/Lb)
3/4" (19mm)	100	0.02	2.00	О	0.006	0.00
3/8" (9.5mm)	79	NA	NA	21	0.011	0.24
#4 (4.75mm)	54	0.02	1.08	25	0.023	0.58
#8 (2.36mm)	38	0.04	1.52	16	0.048	0.76
#16 (1.18mm)	26	0.08	2.08	12	0.092	1.10
#30 (0.60mm)	17	0.14	2.38	9	0.183	1.65
#50 (0.30mm)	10	0.30	3.00	7	0.362	2.53
#100 (0.15mm)	4	0.60	2.40	6	0.728	4.37
#200 (0.075mm)	2.7	1.60	4.32	1.3	1.452	1.89
* (0.038mm)	1.8	NA	NA	0.9	2.9	2.74
** (0.019mm)	1.1	NA	NA	0.6	5.8	3.56
	N/IS	II SA -	12 72		My SA -	10 /2

MS II SA = 18.78

My SA = 19.42

* Assumes 65% of the Material Passing the 0.075mm Sieve Passes 0.038mm ** Assumes 65% of the Material Passing 0.038mm Passes 0.019mm

#200 (0.075mm)	2.7	1.60	4.32	1.3	1.452	1.89
* (0.038mm)	1.9	NA	NA	0.8	2.9	2.35
** (0.019mm)	1.3	NA	NA	0.6	5.8	3.29

MS II SA = 18.78

My SA = 18.75

^{*} Assumes **70%** of the Material Passing the 0.075mm Sieve Passes **0.038mm**

^{**} Assumes 70% of the Material Passing 0.038mm Passes 0.019mm

SURFACE AREA CALCULATIONS

2001 TM Data

Mix Type 2350 Grad. #5

Avg. + 1 **SD**

		MS II			My Calculations	
Sieve		SA	SA		SA	SA
Size	% Passing	Factor	(SF/Lb)	% Retained	Factor	(SF/Lb)
3/4" (19mm)	100	0.02	2.00	О	0.006	0.00
3/8 " (9.5mm)	100	NA	NA	0	0.011	0.00
# 4 (4.75mm)	89	0.02	1.78	11	0.023	0.25
#8 (2.36mm)	72	0.04	2.88	17	0.048	0.81
#16 (1.18mm)	52	0.08	4.16	20	0.092	1.83
#30 (0.60mm)	35	0.14	4.90	17	0.183	3.11
#50 (0.30mm)	20	0.30	6.00	15	0.362	5.43
#100 (0.15mm)	10	0.60	6.00	10	0.728	7.28
#200 (0.075mm)	5.5	1.60	8.80	4.5	1.452	6.53
* (0.038mm)	3.6	NA	NA	1.9	2.9	5.58
** (0.019mm)	2.3	NA	NA	1.3	5.8	7.26
MS II SA -			36 52		My SA -	38 00

 $MS \parallel SA = 36.52$

My SA = 38.09

* Assumes 65% of the Material Passing the 0.075mm Sieve Passes 0.038mm ** Assumes 65% of the Material Passing 0.038mm Passes 0.019mm

#200 (0.075mm)	5.5	1.60	8.80	4.5	1.452	6.53
* (0.038mm)	3.9	NA	NA	1.7	2.9	4.79
** (0.019mm)	2.7	NA	NA	1.2	5.8	6.70

MS || SA = 36.52

My SA = 36.74

^{*} Assumes 70% of the Material Passing the 0.075mm Sieve Passes 0.038mm ** Assumes 70% of the Material Passing 0.038mm Passes 0.019mm

Examples of

Aggregate SA
vs
% Passing Various Sieves

SA vs. % Passing 3/4" Sieve

SA vs. % Passing 1/2" Sieve

PERCENT PASSING 1/2" SIEVE

There is virtually no correlation between the percent passing the 34" or 1/2" sieves and the Aggregate Surface Area (SA)

SA vs. % Passing #4 Sieve

SA vs. % Passing #8 Sieve

SA vs. % Passing #16 Sieve

SA vs. % Passing #30 Sieve

SA vs. % Passing #50 Sieve

SA vs. % Passing #100 Sieve

SA vs. % Passing #200 Sieve

Another Option besides "SA" that could have been used to Represent Aggregate Gradation would have been Fineness Modulus

FINENESS MODULUS Vs. SURFACE AREA

Consider:

AGGREGATE SURFACE AREA "INDEX"

Aggregate Surface Area in SF/Lb.

ASPHALT FILM THICKNESS "INDEX"

Asphalt Film Thickness in Microns

Asphalt Film Thickness (AFT) is simply the:

Effective AC Volume (V_{be})

Divided by the

Aggregate Surface Area (SA)

ASPHALT FILM THICKNESS CALCULATION

AFT (in microns) =
$$\frac{P_{be} \times 4870}{100 \times P_{s} \times SA}$$

Where:

P_{be} = Effective Asphalt Content (% of Total Mixture Weight)

P_s = Percent Aggregate in Mixture/100 (ie. Decimal)

SA = Calculated Surface Area in SF/Lb.

SA = 2 + .02a + .04b + 0.08c + .14d + .30e + .60f + 1.60g

Where:

a,b,c,d,e,f and g are % of total aggregate passing the #4, #8, #16, #30, #50, #100 and #200 sieves, respectively

Examples of

VS

VS

Passing Various Sieves

AFT vs. % Passing #4 Sieve

AFT vs. % Passing #8 Sieve

AFT vs. % Passing #16 Sieve

AFT vs. % Passing #50 Sieve

AFT vs. % Passing #100 Sieve

AFT vs. % Passing #200 Sieve

Some Methods to Increase AFT:

- Reduce the % passing the #30, #50, #100 and/or #200 sieves
- Increase the amount of crushed material
- Waste the baghouse fines
- Completely redesign the mixture

The Primary Difference

between

Asphalt Pavement Mixture

and

Aggregate Base

is

ASPHALT CEMENT

REDUCED PAY FACTORS FOR MIXTURE PRODUCTION FAILURES

	Pay Factors		
Item	Individual	Moving Average	
Gradation	95%	75%	
Coarse and Fine Aggrega Crushing	90%	NA	
VMA	85%	75%	
Asphalt Binder Content	85%	75%	
Production Air Voids (Isolated and Individual)	70%	50%	
Asphalt Film Thickness	No Curre	nt Requirement	

Approximate AFT's of some 1960', 70's and 80's Projects

(Based on Mn/DOT Test Results)

APPROXIMATE AFT 1963 Thru 1965 Projects 2331 & 2341 Non Wear

APPROXIMATE AFT 1963 Thru 1965 Projects

APPROXIMATE AFT 1963 Thru 1965 Projects Wear Mixtures

1978 T R IA L M IX A F T (2331 Non Wear)

1978 TRIAL MIX AFT (2331 & 2341 Wear)

1980 PROJECT AFT (Non Wear Mixtures)

1980 PROJECT AFT (2331 & 2341 Wear Mixtures)

1982 PROJECT AFT (Non Wear Mixtures)

1982 PROJECT AFT (2331 & 2341 Wear)

1984 TRIAL MIX AFT (2331 Non Wear)

1984 TRIAL MIX AFT (2331 & 2341 Wear)

1986 TRIAL MIX AFT (2331 Non Wear)

1986 TRIAL MIX AFT (2331 Shoulder Wear)

1986 TRIAL MIX AFT (2331 & 2341 Wear)

AVERAGE AFT

	2331 & 2341	2331, 2341 & 2351	2351	2361
YEAR	NON WEAR	WEAR	NON WEAR	WEAR
1963-65	6.5	7.8	11.1	NA
1978	6.7	9.3	NA	11.7
1980	5.6	6.8	NA	9.1
1982	5.1	6.6	NA	11.3
1984	7.4	9.6	NA	?
1986	7.8	9.4	NA	13.9

Some Comments

concerning

VMA, AFT and V_{be}

Mn/DOT's current minimum VMA requirements vary from 12.5% to 15.0%

Depending on max. aggregate size and percent passing #8 sieve.

The Sixth Edition of the Asphalt Institutes MS-2 also lists a Minimum VMA of 17%* for a Mixture with 3/8''Maximum Sized Aggregate

* 4% Design Air Voids

This results in a VMA Range of <u>4.5%</u> (17.0 – 12.5) for our normally used Asphalt Mixture Gradations

MINIMUM VMA CRITERIA

(Based on 4% Design Air Voids)

ASPHALT INSTITUTE MIX DESIGN (MS-2)

Nominal Maximum	Maximum	Minimum
Aggregate Size	Aggregate Size	% VMA
25.0 mm (1")	1.5"	12.0
19.0 mm (3/4")	1"	13.0
12.5 mm (1/2")	3/4"	14.0
9.5 mm (3/8")	1/2"	15.0
4.75mm (#4)	3/8"	17.0

VMA includes both V_{be} and V_a

As a result, in order to achieve the desired minimum V_{he} :

The minimum required VMA should vary with the V_a during mix production

Example of VMA vs V_{be} as V_a Changes

- If VMA = 14.0 and $V_a = 4.0$; $V_{be} = 10.0\%$
- If VMA = 14.0 and $V_a = 5.0$; $V_{be} = 9.0\%$
- If you assume that a V_{be} of 10% provides the desired amount of AC for a specific gradation, the mixture could have 10% less V_{be} than desired and still fully meet the VMA criteria if the V_a increases from 4.0 to 5.0%, while the VMA remains at 14.0%.

In order to maintain an AFT of 8.0 Microns over our normal range of aggregate surface areas the V_{be} would have a **Range of about 6.5%**

AFT Spec. vs. V_{be} Spec.

• A "normal" AFT spec. requires the V_{be} to be directly proportional to the aggregate surface area (SA).

• An Effective AC Volume (V_{be}) spec. would allow the V_{be} to be proportional, but not directly proportional, to the aggregate surface area. However, "Steps" would be required as the SA changed.

V_{be} Vs. SA Vs. AFT (Based on 2004 Test Data)

An "Adjusted" AFT Specification

- Allows the V_{be} to have a Range of about 4.5%, to basically match current Asphalt Institute VMA criteria
- Eliminates the need for "steps" in the minimum V_{be} required
- Allows both Individual and Moving Average Specification requirements
- Example: Adj. AFT = AFT + 0.06(SA-28)

Required V_{be} Necessary to Provide an AFT, or Adjusted AFT, of 8.0 Microns (Based on 2004 Project Test Data)

Approximate V_{be} Ranges:

4.5% for VMA Criteria

6.5% for "Normal" AFT

4.5% for "Adjusted" AFT

Some "Experts" believe that VMA combined with VFA and Fines/Effective AC is adequate for specifying the minimum V_{be} .

We've already discussed the problems with VMA. Now we'll cover VFA and P_{200}/P_{be}

VFA

VFA stands for the "voids filled with asphalt" and is the Percent V_{be} as compared to the total Percent VMA.

If a mixture has a V_{be} of 9.5% and a VMA of 14.0%, the VFA would be 68%.

VFA Criteria

- VFA criteria is usually based on Mixture Type or Traffic Level, and is listed as a range.
- VFA criteria is not based on the gradation: either maximum aggregate size or aggregate surface area
- Our VFA specs require between 65% and 78% for Wear, and between 70% and 83% for Non-Wear at Design

MINIMUM VMA VS. AGGREGATE SURFACE AREA (Mixtures with 8 Microns AC Film Thickness and 3% Air Voids)

SA	Aggregate SA	Min. Req. AC _{eff} Volume	Min. Req. AC _{eff} Volume	Min. VMA for	Minimum Total VMA (for 3% Voids	% of VMA Which is AC _{eff}
(SF/Lb.)	(SF)	(gal/CF)	(CF/CF)	AC _{eff}	and AC _{eff})	(VFA)
					•	
15	2256	0.443	0.059	5.9	8.9	66
20	2949	0.579	0.077	7.7	10.7	72
25	3612	0.709	0.095	9.5	12.5	76
30	4250	0.834	0.112	11.2	14.2	79
35	4865	0.955	0.128	12.8	15.8	81
40	5462	1.072	0.143	14.3	17.3	83

MINIMUM VMA VS. AGGREGATE SURFACE AREA (Mixtures with 8 Microns AC Film Thickness and 4% Air Voids)

SA (SF/Lb.)	Aggregate SA (SF)	Min. Req. AC _{eff} Volume (gal/CF)	Min. Req. AC _{eff} Volume (CF/CF)	Min. VMA for AC _{eff}	Minimum Total VMA (for 4% Voids and AC _{eff})	% of VMA Which is AC _{eff} (VFA)
<u> </u>	(-)	(5)	()	- en	en/	, ,
15	2234	0.439	0.059	5.9	9.9	59
20	2916	0.572	0.077	7.7	11.7	66
25	3574	0.702	0.094	9.4	13.4	70
30	4210	0.827	0.111	11.1	15.1	73
35	4819	0.946	0.127	12.7	16.7	76
40	5402	1.061	0.142	14.2	18.2	78

Fines to Effective Asphalt (P_{200}/P_{be})

• The P_{200}/P_{be} ratio may limit the P_{200} , but it has little if any affect on the remaining sieves.

• In the SA calculation, the P_{200} generally accounts for only 20% to 30% of the Total calculated SA. 70% to 80% comes from the other sieves.

AFT vs. #200/Pbe

(2004 Project Data)

Summary of 2004 Project Data

AFT Vs. SA
Contractor Results, Except when OT
(2004 Project Data)

AFT vs. VMA

Project Average AFT Mixtures with 3.0% Air Void Design

Project Average AFT Mixtures with 3.5% Air Void Design

Project Average AFT Mixtures with 4.0 Air Void Design

"Adjusted" AFT Specification

- V_{be} does not have to be directly proportional to the Aggregate SA (V_{be} range less than 6.5%)
- Allows "constant" minimum specification requirements (MA=4 of 8.0 & Indiv of 7.5, etc.) No "steps" required.
- No need for VMA, VFA, or upper limit on $P_{200}/P_{be.}$ Must maintain V_a requirements.

a) 4 years old

b) 5 years old

c) 6 years old

d) 7 years old

e) 8 years old

f) 9 years old

Summary

of the current

Adjusted AFT Spec.

Mn/DOT's Adjusted AFT specification is basically a compromise of "straight" AFT and VMA specifications.

Whereas the minimum required V_{be} in a VMA spec is based on the Nominal Maximum aggregate size, the minimum required V_{be} in our Adj. AFT spec is based on the calculated Aggregate SA "Index"

• The Contractor's **Trial Mix** shall have a minimum Adjusted AFT of **8.5** microns.

• The minimum **production Individual**Adjusted AFT requirement is **7.5** microns.

• The minimum production Moving

Average (n=4) Adjusted AFT requirement is 8.0 microns.

A gradation and Adjusted AFT calculation are required for each 1000 tons, or portion thereof,

or

at the same rate as the QC Mixture Property (G_{mm} and G_{mb}) tests, with a minimum of one per day.

Aggregate SA Adjustment

Since aggregates with higher G_{sb} 's will have less SA per pound than those with lower G_{sb} 's, an Adjusted SA will be calculated as follows for aggregates with minus #4 aggregate G_{sb} 's less than 2.580, or greater than 2.700.

Adjusted SA = SA*(2.650/-#4Gsb)

There is currently no SA adjustment for aggregates with -#4 G_{sh}'s between 2.580 and 2.700.

• The JMF limits for the gradation sieves are the same as the "Broad Band" limits.

• These "Broad Band" limits apply to both Moving Average and Individual results.

- #8 Individual Sieve Tolerances:

$$#16 = 4\%$$
 $#30 = 4\%$
 $#50 = 3\%$
 $#100 = 2\%$
 $#200 = 1.2\%*$

* Tolerance has been changed from Table 2360.4M

 Accurate Gradation results are very important, especially for the #30 thru #200 sieves, in order to meet the required test tolerances

 Hand Washing (rather than Agra-Wash) will be required if either gradation or calculated Adjusted AFT are Out of Tolerance • The allowable Adjusted AFT calculation tolerance is **1.2** microns.

• If the Adjusted AFT calculation is confirmed to be out of tolerance, the Agency Adjusted AFT will be **Equalized** and used for both Individual and Moving Average calculations.

• Equalization of the Agency Adjusted AFT consists of increasing the original Agency value by 0.5 microns.

• This increased value will then be used for acceptance of the test result.

- The minimum **Individual** Adjusted AFT requirement is 7.5 microns.
- Material with less than 7.5, but equal to or greater than 7.0 microns, will receive 90% pay.
- Material with less than 7.0, but greater than 6.0 microns, will receive 75% pay.
- Material with 6.0 microns, or less, is subject to **removal** and replacement at the Contractor's expense.

• The minimum **Moving Average** (n=4)
Adjusted AFT requirement is 8.0 microns.

• Generally, all Material which contributed to a MA less than 8.0 microns will receive 80% pay.(Exception is Ind. Tests of 8.0 or greater)

• The MA will not be calculated until the 6th test after the beginning of mix production of a specific mixture. It will include Individual results of Tests 3, 4, 5 and 6.

• The Adjusted AFT Spec has usually led to mixtures with less -#200, and often more +#8, material.

• The Contractor can make an economic decision: Reduce AC content by using less and cleaner "sand", or use less +#8 material and more AC.

Conclusion

Our Adjusted AFT Spec is basically a compromise between VMA and "straight" AFT criteria.

Instead of an approximate V_{be} range of 4.5% being based on the Maximum Aggregate Size, it is based on the Aggregate SA "Index".

Adjusted AFT is an "Index" that represents the V_{be} . As the SA increases, the V_{be} must also increase in order to maintain a constant Adjusted AFT

Density

Generally, the two most important factors in long term asphalt pavement performance are adequate (but not too much) asphalt cement and density.

Adjusted AFT will not do it alone!